

Fig. 2. The crystal structure viewed along \mathbf{b}. The possible hydrogen bonds are represented by broken lines.
atoms have not been determined, some of the interatomic distances may be considered as hydrogen bonds. The structure viewed down \mathbf{b} is shown in Fig. 2. The various hydrogen-bond distances are presented in Table 3. All four water molecules enter into hydrogenbond formation. $\mathrm{O}(W 1)$ and $\mathrm{O}(W 2)$, and $\mathrm{O}(1), \mathrm{O}(2)$, $O(3)$ and $O(4)$ of the phosphinic groups are coordinated to Mn and also form hydrogen bonds. Uncoordinated $\mathrm{O}(W 3)$ and $\mathrm{O}(W 4)$ take part in the hydrogen bonds with Br and the O atoms of other water molecules and the phosphinic group. The amino group in molecules I and II is also involved in hydrogen-bond formation. Short intermolecular contacts are listed in Table 3.

This work was supported by the Polish Academy of Sciences.

References

Glowiak, T. \& Ciunik, Z. (1977). In the press.
Glowiak, T. \& Sawka-Dobrowolska, W. (1976). Proc. 17th Int. Conf. Coord. Chem., Hamburg, p. 27.
Glowiak, T. \& Sawka-Dobrowolska, W. (1977a). Acta Cryst. B33, 1522-1525.
Glowiak, T. \& Sawka-Dobrowolska, W. (1977b). Acta Cryst. B33. In the press.
International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press.

Narayanan, P. \& Venkataraman, S. (1975). Z. Kristallogr. 142, 52-81.

Acta Cryst. (1977). B33, 2650-2653

Racemic \boldsymbol{O}-Methylphenylphosphinylacetic Acid

By Z. Gafdecki and M. L. Geówka
Institute of General Chemistry, Technical University, 36 Żwirki, 90-924 Łódź, Poland

(Received 14 December 1976; accepted 10 March 1977)

Abstract. $(\pm)-\mathrm{Ph}(\mathrm{MeO}) \mathrm{P}(\mathrm{O}) \mathrm{CH}_{2} \mathrm{COOH}$, monoclinic, $P 2{ }_{1} / c, a=9.552(5), b=9.072(5), c=11.882(6) \AA$, $\beta=92.25(8)^{\circ}, D_{o}=1.37, D_{c}($ for $Z=4)=1.374 \mathrm{~g}$ $\mathrm{cm}^{-3}, \mu(\mathrm{Cu} \mathrm{K(r)})=22.6 \mathrm{~cm}^{-1}$. The symbolic addition procedure and full-matrix least-squares refinement led to the final R of 0.058 for 1473 independent reflexions (Weissenberg photographs, Ni -filtered Cu Kr radiation). The molecules form dimers utilizing the O atom of the phosphoryl group.

Introduction. The structure of the title compound has been solved as part of the programme on the X-ray
study of phosphinylacetic acid derivatives. These optically active compounds, obtained and resolved by Michalski \& Musierowicz (1967), are particularly interesting for explaining the mechanism of stereospecific synthesis. The (-) enantiomer is at present under examination.

Colourless, transparent crystals were obtained from an acetone-water solution as thick. needles, elongated along [010]. The systematic absences, $h 0 l$ with l odd and $0 k 0$ with k odd, indicated the space group explicitly. The unit-cell parameters were first calculated from high-order reflexions on Weissenberg and KFOR
retigraph photographs; refinement was based on CAD4 diffractometer measurements. Multiple-film, equiinclination Weissenberg photographs of layers $h 0 l-h 5 l$ were taken on a sphere of diameter 0.55 mm and interlayer scale factors were calculated from $h k 0$ reflexions. Intensities of 1473 reflexions (about 63% of the accessible total) were recorded and estimated visually. The data were corrected for spherical absorption (International Tables for X-ray Crystallography, 1959). All calculations were processed with the XRAY 70 system (Stewart, Kundell \& Baldwin, 1970). The scattering factors for P, O and C atoms were taken from Doyle \& Turner (1968) and for H from International Tables for X-ray Crystallography (1962).

The structure of the title compound has been determined by means of the symbolic addition procedure. The result reported in a preliminary

Fig. 1. A view of the molecule perpendicular to the benzene ring (vibration ellipsoids are at 40% probability for nonhydrogen atoms).

Fig. 2. A projection of the unit-cell contents with the hydrogen bond marked.
communication (Gałdecki \& Główka, 1976) was based on an E map for $160 E$'s >1.5 and on subsequent Fourier and difference Fourier syntheses ($R=0.33$).

Full-matrix least-squares refinement of this model resulted in $R=0.077$ after four cycles with isotropic and a further three cycles with anisotropic thermal parameters ($w=1$). The subsequent difference maps, alternating with refinement, revealed sites for all H atoms. Their inclusion reduced R to a final value of $0 \cdot 058$.* For the refinement the programs $C R Y L S Q$ and ORFLS, included in the XRAY 70 system, were used. The final weighting scheme applied was $w^{-1}=7+$ $|F|+0.01|F|^{2}$. Maximum and mean values of Δ / σ in the final cycle were 2.12 and 0.33 respectively. Four reflexions with $w\left(\left|F_{o}-F_{c}\right|\right)>0.72$ were not included in the refinement.

Discussion. In the solid state, O-methylphenylphosphinylacetic acid molecules exist as dimers, utilizing the hydroxyl group and an O atom of the

[^0]Table 1. Atomic coordinates $\left(\times 10^{4}\right)$ for the nonhydrogen atoms, with e.s.d.'s in parentheses

	x	y	z
P	$1780(1)$	$2813(2)$	$4098(1)$
$\mathrm{O}(1)$	$1537(3)$	$2304(4)$	$5252(2)$
$\mathrm{O}(2)$	$1274(3)$	$4437(5)$	$3832(3)$
$\mathrm{O}(3)$	$-773(3)$	$157(6)$	$3804(3)$
$\mathrm{O}(4)$	$1339(3)$	$-681(5)$	$3389(3)$
$\mathrm{C}(1)$	$3594(4)$	$2726(6)$	$3790(3)$
$\mathrm{C}(2)$	$4085(5)$	$3429(8)$	$2847(4)$
$\mathrm{C}(3)$	$-4508(5)$	$3337(9)$	$2617(5)$
$\mathrm{C}(4)$	$-3626(5)$	$2531(8)$	$3267(4)$
$\mathrm{C}(5)$	$-4082(5)$	$1862(7)$	$4211(5)$
$\mathrm{C}(6)$	$4518(5)$	$1925(7)$	$4482(4)$
$\mathrm{C}(7)$	$777(5)$	$1827(7)$	$3018(4)$
$\mathrm{C}(8)$	$488(4)$	$270(7)$	$3413(3)$
$\mathrm{C}(9)$	$1868(9)$	$5644(11)$	$4496(7)$

Table 2. Hydrogen-atom parameters ($\times 10^{3}$)

	x	y	z	$U\left(\AA^{2}\right)$
H(1)	84 (6)	60 (9)	591 (5)	38 (3)
H(2)	336 (5)	400 (6)	232 (4)	50 (2)
H(3)	-429 (5)	389 (6)	187 (4)	54 (3)
H(4)	-269 (5)	263 (6)	311 (4)	50 (2)
H(5)	-344 (5)	138 (7)	474 (4)	57 (4)
H(6)	419 (5)	152 (6)	522 (4)	50 (3)
H(7)	121 (4)	183 (5)	236 (4)	31 (2)
H(8)	-14 (7)	250 (8)	278 (5)	95 (5)
H(9)	254 (13)	505 (14)	484 (11)	223 (13)
H(10)	246 (14)	657 (15)	430 (10)	198 (12)
H(11)	134 (11)	663 (13)	468 (9)	247 (11)

Table 3. Bond lengths (\AA) and angles $\left(^{\circ}\right)$, not corrected for thermal vibration, with their e.s.d.'s in parentheses

The mean value of the $\mathrm{H}-\mathrm{C}$ distances is 1.00 (2) \AA.

$\mathrm{P}-\mathrm{O}(1)$	1.474 (9)	$\mathrm{C}(1)-\mathrm{C}(2)$	1.387 (15)
$\mathrm{P}-\mathrm{O}(2)$	1.579 (28)	$\mathrm{C}(2)-\mathrm{C}(3)$	1.384 (11)
$\mathrm{P}-\mathrm{C}(1)$	1.786 (14)	$\mathrm{C}(3)-\mathrm{C}(4)$	1.338 (21)
$\mathrm{P}-\mathrm{C}(7)$	1.807 (31)	$\mathrm{C}(4)-\mathrm{C}(5)$	1.362 (16)
$\mathrm{O}(2)-\mathrm{C}(9)$	1.451 (48)	$\mathrm{C}(5)-\mathrm{C}(6)$	1.389 (12)
$\mathrm{O}(3)-\mathrm{C}(8)$	$1 \cdot 311$ (17)	$\mathrm{C}(6)-\mathrm{C}(1)$	1.388 (14)
$\mathrm{O}(4)-\mathrm{C}(8)$	$1 \cdot 187$ (36)	$\mathrm{C}(7)-\mathrm{C}(8)$	1.526 (22)
		$\mathrm{O}(1) \cdots \mathrm{H}(1)$	1.866 (11)
$\mathrm{O}(1)-\mathrm{P}-\mathrm{O}(2)$	114.8 (1.)	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	119.6 (1.)
$\mathrm{O}(1)-\mathrm{P}-\mathrm{C}(1)$	111.5 (1.)	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	120.9 (1.)
$\mathrm{O}(1)-\mathrm{P}-\mathrm{C}(7)$	114.0 (1.)	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	120.3 (1.)
$\mathrm{O}(2)-\mathrm{P}-\mathrm{C}(1)$	107.0 (1.)	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	120.9 (1.)
$\mathrm{O}(2)-\mathrm{P}-\mathrm{C}(7)$	99.8 (1.)	$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(1)$	118.7 (1.)
$\mathrm{C}(1)-\mathrm{P}-\mathrm{C}(7)$	108.9 (1.)	$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{C}(2)$	119.5 (1.)
$\mathrm{P}-\mathrm{O}(2)-\mathrm{C}(9)$	119.0 (2.)	$\mathrm{O}(3)-\mathrm{C}(8)-\mathrm{C}(7)$	111.3 (2.)
$\mathrm{P}-\mathrm{C}(7)-\mathrm{C}(8)$	109.8 (1.)	$\mathrm{O}(3)-\mathrm{C}(8)-\mathrm{O}(4)$	126.2 (2.)
$\mathrm{P}-\mathrm{C}(1)-\mathrm{C}(2)$	120.5 (1.)	$\mathrm{O}(4)-\mathrm{C}(8)-\mathrm{C}(7)$	122.4 (2.)
$\mathrm{P}-\mathrm{C}(1)-\mathrm{C}(6)$	120.0 (1.)	$\mathrm{O}(3)-\mathrm{H}(1) \cdots \mathrm{O}(1)$	164.1 (1.)

Table 4. Selected intermolecular distances $<3.5 \AA$

The first atom is at x, y, z and superscripts refer to equivalent positions: (i) $-x, 1-y, 1-z$, (ii) $x, \frac{1}{2}-y, \frac{1}{2}+z$, (iii) $-x, \frac{1}{2}+y$, $\frac{1}{2}-z$.

$\mathrm{O}(3) \cdots \mathrm{C}\left(8^{\text {i }}\right.$)	$3 \cdot 330$ (11)	$\mathrm{O}(2) \cdots \mathrm{C}\left(8^{\text {iii }}\right)$	$3 \cdot 189$ (13)
$\mathrm{C}(5) \cdots \mathrm{C}\left(9^{\text {i }}\right.$)	$3 \cdot 420$ (38)	$\mathrm{O}(2) \cdots \mathrm{O}\left(3^{\text {iii) }}\right.$	$3 \cdot 217$ (14)
$\mathrm{O}(3) \cdots \mathrm{O}\left(4^{\text {i }}\right.$)	3.433 (30)	$\mathrm{C}(4) \cdots \mathrm{O}\left(4^{\text {iii) }}\right.$	3.408 (90)
$\mathrm{O}(1) \cdots \mathrm{C}\left(8^{\text {i }}\right.$)	3.456 (35)	$\mathrm{C}(3) \cdots \mathrm{O}\left(4^{\text {iii }}\right.$)	3.416 (69)
$\mathrm{O}(1) \cdots \mathrm{C}\left(7^{\text {ii) }}\right.$	$3 \cdot 483$ (56)	$\mathrm{C}(7) \cdots \mathrm{O}\left(4^{\text {iii) }}\right.$	3.424 (27)

phosphoryl group. The length of the hydrogen bond is $2 \cdot 62$ (1) \AA, which agrees with values tabulated by Brown (1976). The $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ angle is $164(1)^{\circ}$. The molecular structure and the numbering system are presented in Fig. 1 (Johnson, 1965). A projection of the unit-cell contents is shown in Fig. 2. The atomic parameters and their estimated standard deviations as obtained from the least-squares refinement are listed in Tables 1 and 2. The bond lengths and angles, not corrected for thermal vibration, are summarized in Table 3. The $\mathrm{P}-\mathrm{OCH}_{3}$ bond length ($1.58 \AA$) is in agreement with the corresponding value in organic phosphates (Karle \& Britts, 1966). The $\mathrm{P}=\mathrm{O}$ and $\mathrm{P}-\mathrm{C}$ bond lengths are 1.47 and $1.79 \AA$ respectively; these values compare well with those found in dimethylphosphinic acid (Giordano \& Ripamonti, 1967), di-nnonylphosphinic acid (Bello, 1973), diphenylphosphinic acid (Fenske, Mattes, Löns \& Tebbe, 1973) and 2aminoethylphosphinic acid (Okaya, 1966). The mean $\mathrm{C}-\mathrm{C}$ distance in the benzene ring is $\sim 1.38 \AA$ and the bond angles range from 119 to 121°. Only C(3)-C(4) is shorter ($1.34 \AA$) but no correction has been made for thermal motion, which is significant. For example,

Table 5. Deviations of some atoms (in \AA) from the least-squares benzene plane
The equation of the least-squares plane is given in the form $l x^{\prime}+m y^{\prime}+n z^{\prime}=d$, where $l=-0.0399 . m=0.8149 . n=0.5783$. $d=4.3979$, and $x^{\prime}=x a$ (similarly y^{\prime} and z^{\prime}) in orthogonal àngström space.

Atoms defining least-squares plane	Other atoms	Deviations from plane
$\mathrm{C}(1)$		0.1069
$\mathrm{C}(2)$		-0.0387
$\mathrm{C}(3)$	0.0594	
$\mathrm{C}(4)$		-0.1247
$\mathrm{C}(5)$		0.0463
$\mathrm{C}(6)$		-0.0492
	P	0.4519
	$\mathrm{O}(1)$	0.8803
	$\mathrm{O}(2)$	1.4962
	$\mathrm{C}(7)$	-0.9852

Declercq, Germain, Putzeys, Rona \& Van Meerssche (1974) have found the distances in the benzene ring to be 1.32 to $1.44 \AA$, and Konno \& Saito (1973) found 1.34 to $1.40 \AA$ for comparable data and similar compounds. The remaining bond lengths and angles are in agreement with previously determined structures, within the limits of errors. Some intermolecular distances $<3.5 \AA$ are given in Table 4 . The equation of the least-squares benzene plane and deviations of some atoms from it are given in Table 5.

The authors are greatly indebted to Dr S . Musierowicz for pointing out the interesting features of this material and for supplying crystals. This research was supported by project MR.I-9 from the Polish Academy of Sciences.

References

Bello, P. (1973). Gazz. Chim. Ital. 103, 537-541.
Brown, I. D. (1976). Acta Cryst. A 32, 24-31.
Declerce, J. P., Germain, G., Putzeys. J. P., Rona, S. \& Van Meerssche, M. (1974). Cryst. Struct. Commun. 3, 579-582.
Doyle, P. A. \& Turner, P. S. (1968). Acta Cryst. A24, 390-397.
Fenske, D., Mattes, R., Löns, J. \& Tebbe, K. F. (1973). Chem. Ber. 106, 1139-1144.
Galdecki, Z. \& Glówka, M. L. (1976). Rocz Chem. 50, 1639-1640.
Giordano, F. \& Ripamonti, A. (1967). Acta Cryst. 22, 678-682.
International Tables for X-ray Crystallography (1959). Vol. II, pp. 302-303. Birmingham: Kynoch Press.
International Tables for X-ray Cry'stallography (1962). Vol. III, pp. 202-203. Birmingham: Kynoch Press.
Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee.
Karle, I. L. \& Britts, K. (1966). Acta Cryst. 20, 118-124.

Konno, M. \& Saito, Y. (1973). Acta Cryst. B29, 28152824.

Michalski, J. \& Musierowicz, S. (1967). Angew. Chem. 79, 1070-1071.

Окача, Y. (1966). Acta Cryst. 20, 712-715.
Stewart, J. M., Kundell, F. A. \& Baldwin, J. C. (1970). The XRAY 70 system. Computer Science Center, Univ. of Maryland, College Park, Maryland.

Acta Cryst. (1977). B33, 2653-2655

Tetrakis(1-pyrazolyl)borato(triphenylphosphine)(carbonyl)(nitrosyl)molybdenum

By E. Rodulfo de Gil, A. Valentina Rivera and Hermes Noguera
Departamento de Química, Facultad de Ciencias, Universidad de los Andes, Merida, Venezuela

(Received 3 December 1976; accepted 25 March 1977)

Abstract._ $\left[\left(\mathrm{C}_{3} \mathrm{H}_{3} \mathrm{~N}_{2}\right)_{4} \mathrm{~B}\right] \mathrm{Mo}\left[\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{P}\right](\mathrm{CO})(\mathrm{NO})$, triclinic, $P 1, a=9.058(5), b=13.132(8), c=$ 15.020 (8) $\AA ; \alpha=86.01(2), \beta=80.26(2), \gamma=$ 71.65 (2) ${ }^{\circ}, U=1671 \AA^{3} ; Z=2, D_{x}=1.38 \mathrm{~g} \mathrm{~cm}^{-3}$. The structure was determined by Patterson methods
and refined to an R of 0.057 for 3759 unique diffractometer data. The coordination around Mo is distorted octahedral, around B it is tetrahedral and around P, distorted tetrahedral. The four pyrazolyl rings are planar, as are the phenyl rings.

Table 1. Atomic coordinates $\left(\times 10^{4}\right)$ with standard deviations in parentheses

	x	y	z		x	y	z
Mo	2887 (1)	1369 (1)	2379 (1)	N(14)	-299 (6)	-947(3)	3502 (3)
P	1859 (1)	2896 (1)	1319 (1)	N(24)	-287 (8)	-1843 (5)	3103 (3)
B	669 (7)	-233 (4)	3085 (3)	C(34)	-1036 (8)	-2353 (5)	3712 (4)
N	3624 (6)	2147 (4)	3082 (3)	C(44)	-1531 (9)	-1817(5)	4530 (4)
$\mathrm{O}(\mathrm{N})$	4131 (7)	2589 (5)	3559 (4)	C(54)	-1060 (8)	-911(4)	4384 (3)
C	4907 (7)	897 (4)	1709 (3)	C(15)	-301 (5)	3330 (3)	1430 (3)
$\mathrm{O}(\mathrm{C})$	6213 (6)	538 (4)	1340 (4)	C(25)	-1060 (6)	2559 (4)	1407 (3)
$\mathrm{N}(11)$	502 (5)	1705 (3)	3216 (3)	C(35)	-2662 (7)	2828 (5)	1541 (4)
N(21)	-260 (5)	949 (3)	3334 (3)	C(45)	-3582 (7)	3873 (6)	1699 (4)
C(31)	-1785 (8)	1409 (5)	3652 (4)	C(55)	-2848 (8)	4650 (5)	1726 (4)
C(41)	-2019 (7)	2476 (5)	3773 (4)	C(65)	-1223 (6)	4385 (4)	1583 (3)
C(51)	-574 (7)	2623 (4)	3497 (3)	C(16)	2459 (6)	2659 (3)	112 (3)
$\mathrm{N}(12)$	2031 (5)	288 (3)	1643 (2)	C(26)	4047 (7)	2243 (4)	236 (3)
N(22)	1079 (5)	-290 (3)	2057 (3)	C(36)	4519 (8)	2067 (4)	--1137(4)
C(32)	727 (8)	-837 (5)	1420 (3)	C(46)	3438 (9)	2281 (5)	1711 (4)
C(42)	1502 (8)	-615 (5)	606 (3)	C(56)	1845 (9)	2696 (5)	-1386 (4)
$\mathrm{C}(52)$	2277 (7)	84 (4)	771 (3)	C(66)	1371 (7)	2895 (4)	--482 (3)
N(13)	3309 (6)	-22 (3)	3293 (3)	C(17)	2255 (6)	4156 (3)	1443 (3)
N(23)	2226 (5)	-571 (3)	3480 (3)	C(27)	2021 (7)	4560 (4)	2302 (4)
C(33)	2789 (8)	-1423 (4)	4021 (4)	C(37)	2188 (8)	5544 (5)	2424 (4)
C(43)	4230 (9)	-1424 (5)	4192 (4)	C(47)	2642 (9)	6137 (5)	1696 (5)
C(53)	4511 (8)	-526 (5)	3721 (4)	C(57)	2919 (9)	5735 (5)	839 (5)
H(25)	-372 (11)	1747 (7)	1285 (6)	C (67)	2712 (7)	4758 (4)	710 (4)
H(35)	-3218 (13)	2225 (9)	1522 (7)	H(31)	-2520 (11)	1020 (12)	3830 (14)
H(45)	-4851 (13)	4082 (10)	1803 (8)	H(4)	-3040 (11)	2990 (13)	3920 (13)
H(55)	-3548 (13)	5461 (8)	1851 (8)	H(51)	-320 (13)	3310 (11)	3420 (12)
H(65)	-662 (11)	4991 (7)	1598 (6)	H(32)	150 (11)	-1340 (11)	1580 (12)
H(26)	4901 (12)	2064 (8)	207 (6)	H(42)	1220 (12)	-820 (13)	40 (8)
H(36)	5740 (14)	1751 (8)	-1394 (7)	H(52)	2760 (13)	430 (12)	320 (13)
H(46)	3819 (16)	2131 (8)	-2413 (7)	H(33)	2310 (13)	-1890 (12)	4310 (10)
H(56)	991 (15)	2868 (8)	-1835 (6)	H(43)	5020 (12)	-1880 (14)	4620 (9)
H(66)	148 (13)	3222 (8)	-230 (6)	H(53)	5450 (11)	- 190 (13)	3770 (12)
H(27)	1684 (12)	4104 (7)	2870 (7)	H(34)	- 1240 (13)	- 3040 (11)	3640 (9)
H(37)	1980 (14)	5851 (8)	3087 (8)	H(44)	-2460 (11)	-1930 (12)	4990 (10)
H(47)	2787 (16)	6905 (8)	1795 (10)	H(54)	-1150(12)	-350 (11)	4800 (11)
H(57)	3278 (16)	6190 (8)	273 (9)	H(67)	2910 (12)	4455 (7)	44 (7)

[^0]: * Lists of structure factors and anisotropic thermal parameters have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 32551 (4 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 13 White Friars, Chester CHI 1NZ, England.

